6 Mendelian randomization
6.1 Data
# Data
load("./data/01_data_ldmat.Rda")
load("./data/03_data_gwas_pqtls.Rda")
# pQTLs
pqtls <- pqtls %>%
mutate(
ld_cluster = if_else(
rsid %in% c("rs66838809", "rs80107551", "rs76449013"),
1,
2
)
)
# GWAS
gwas <- gwas %>%
filter(!(id %in% c("GCST006979", "GCST006980")))6.2 Analyses
Mendelian randomization (MR) analyses of circulating sclerostin against cardiovascular events and risk factors were performed using the datasets in Table 2.2. The cis sclerostin pQTLs were used as the genetic instruments and two variant sets were used: (i) all 5 cis sclerostin pQTLs, and (ii) one cis sclerostin pQTL from each LD cluster (i.e., rs668388091 & rs1107747; Section 3.2). Since the sclerostin pQTLs are correlated, the generalized inverse-weighted method (Burgess et al. 2016) was used to perform the MR analyses.
# MR analyses
mr_results <- tibble()
for (id in unique(gwas$id)) {
## MR data
mr_gwas <- gwas %>%
filter(id == !!id) %>%
inner_join(
x = pqtls,
y = .,
by = c("rsid", "chr", "pos", "ref", "alt")
) %>%
relocate(id, .before = rsid)
## MR analysis
for (j in seq_len(2)) {
### Data
if (j == 1) {
mr_data <- mr_gwas
mr_corr <- ld_mat[
match(mr_data$rsid, rownames(ld_mat)),
match(mr_data$rsid, rownames(ld_mat)),
drop = FALSE
]
mr_model <- "5_cis_pqtls"
} else {
mr_data <- mr_gwas %>%
arrange(pvalue.x) %>%
distinct(ld_cluster, .keep_all = TRUE)
mr_corr <- ld_mat[
match(mr_data$rsid, rownames(ld_mat)),
match(mr_data$rsid, rownames(ld_mat)),
drop = FALSE
]
mr_model <- "2_cis_pqtls"
}
if (any(mr_data$rsid != rownames(mr_corr)))
stop("genetic varaints are not aligned between the GWAS data and the LD matrix")
### Input
mr_inputs <- MendelianRandomization::mr_input(
bx = mr_data$beta.x,
bxse = mr_data$se.x,
by = mr_data$beta.y,
byse = mr_data$se.y,
correlation = mr_corr,
snps = mr_data$rsid
)
### Analysis
mr_analysis <- MendelianRandomization::mr_ivw(
mr_inputs,
model = "fixed",
correl = TRUE
)
mr_analysis <- tibble(
id = !!id,
model = !!mr_model,
n_snps = !!nrow(mr_data),
beta = -1 * !!round(mr_analysis$Estimate, 6), # per lower SD sclerostin
se = !!round(mr_analysis$StdError, 6),
pvalue = !!signif(mr_analysis$Pvalue, 4)
)
### Results
mr_results <- mr_results %>%
bind_rows(mr_analysis)
}
}
# MR results
mr_results <- studies %>%
select(id, pmid, trait, n, n_cases) %>%
inner_join(
x = .,
y = mr_results,
by = "id"
)Additional MR analyses of hypertension2, stroke events3 and coronary artery calcification were extracted from Table 2 in Zheng et al. (2023) and added to the results.
# MR analyses extra
mr_results_extra <- fread(
"./data/00_data_mr.tsv",
header = TRUE, data.table = FALSE, sep = "\t"
)
mr_studies_extra <- fread(
"./data/00_data_mr_studies.tsv",
header = TRUE, data.table = FALSE, sep = "\t"
)
# MR results
mr_results <- mr_studies_extra %>%
select(id, pmid, trait, n, n_cases) %>%
inner_join(
x = .,
y = mr_results_extra,
by = "id"
) %>%
bind_rows(mr_results, .)
# MR studies
mr_studies <- studies %>%
bind_rows(mr_studies_extra)README
id- dataset ID
pmid- PubMed ID
trait- phenotype
n- number of samples
n_cases- number of cases
model- MR model
n_snps- number of SNPs
beta- MR effect size (per SD lower sclerostin)
se- MR standard error
pvalue- MR p-value
6.3 Results
: Effect (in SD)
: Odds ratio
mr_results %>%
filter(model == "2_cis_pqtls") %>%
inner_join(
x = select(mr_studies, id, flag),
y = .,
by = "id"
) %>%
filter(flag == "Y") %>%
distinct(trait, .keep_all = TRUE) %>%
qq_plot()mr_results %>%
filter(model == "5_cis_pqtls") %>%
inner_join(
x = select(mr_studies, id, flag),
y = .,
by = "id"
) %>%
filter(flag == "Y") %>%
distinct(trait, .keep_all = TRUE) %>%
qq_plot()mr_results %>%
filter(model == "2_cis_pqtls") %>%
inner_join(
x = select(mr_studies, id, flag),
y = .,
by = "id"
) %>%
filter(flag == "N") %>%
qq_plot()mr_results %>%
filter(model == "5_cis_pqtls") %>%
inner_join(
x = select(mr_studies, id, flag),
y = .,
by = "id"
) %>%
filter(flag == "N") %>%
qq_plot()